09/555929
[’7 AT 1 422 ReQ;:’CT/PTOO 6 JUN 2000

) 6/> DATA COMMUNICATIONS

The present invention relates to a data communications system, and in
particular to the control of access by users to copies of digitally encoded data. It
l%g{ 5 is applicable, for example, to the control of data multicast on the internet. j

> ‘ ‘ Multicasting routing techniques have been developed to allow multiple
copies of a data item to be distributed efficiently to a large number of end users.
However, for such techniques to be exploited commercially, it necessary to control
selectively access by users to the data. For example, in an application in which
10 selected stock market prices are multicast via the internet to subscribers, it is
necessary to ensure that the data is accessed only by users who have paid the
relevant subscription. This might be achieved by encrypting the data and only
releasing the relevant key to the user in return for the subscription payment.
However, whenever one user’s subscription expires, after a fixed length of time or
after a predetermined quantity of data has been received, it would be necessary to
change the key for all the users, in order to exclude the one user. In such a
situation, the traffic associated with key distribution becomes a significant
operating overhead, and may even exceed the traffic for the data itself.
\According to a first aspect of the present invention, there is provided a
method of distributing digitially encoded data, comprising

dividing said data into a multiplicity of frames,

encrypting sai ames,

°

distributiné muitiple “egpies of the said data frames to a multiplicity of

users,

25 communicating a seed value r key generation to respective secure
modules located at each of the multiplicity obwysers,

decoding the data frames at respective rs using keys derived from the

seed value communicated to the secure module,

passing a control message to the secure module a selected one or more

30 of the muiltiplicity of users,

at the or each selected user, in response to the said comgol message,

controlling the availability of keys generated from the said seed valu®

thereby

selectively controlling access by the users to the said data.

10

15

20

25

30

2

The term “frame” as used in this document denotes an application-level
entity, sometimes referred to as an Application Data Unit (ADU;, and is to be
distinguished from, e.g., conventional video “frames”. The terms Application Data
Unit and frame are used equivalently in this document.

‘[be method of the present invention provides full and effective control of

access by

sers to data, without imposing heavy communication overheads. This
is achieved dividing the data item into frames, individually encrypting the
frames with a seXes of keys, and using a controlled secure module at the customer
location to genera\te\ the corresponding series of keys required to decrypt the
received data. The seture module is controlled to limlt the availability of the keys.
For example, an intial set\yp message to the secure module may instruct it only to
generate a limited number oNkeys, say one hundred. If the user subsequently pays

to extend their subscription, t

n a further control message may be sent to the
secure module to allow the generaNon of further keys from the existing seed value

The invention includes, but is\not limited to, data communications systems
in which the frames or “ADU’s” are coNmunicated over, e.g., a federated public
data network such as the Internet. It also eqcompasses systems in which the step
of communicating ADU’s is carried out, e.g)\ by physically distributing a data
carrier such as a CD-ROM containing the AD . The data on the distribution
medium may be separated into frames each with sequence number and each
encrypted with a different key. During reading of daPg from the data carrier the
securme module would generate keys, and this may be \ne off-line. An on-line
connection may still be required, e.g. in order to request a receipt and for
transmission of a response to such a request. .

Although the invention is sditable for use in a multicast data
communications network, it is also applicable in a wide range of other contexts,
wherever it is necessary control access to a widely distributed data items.
Possible appliqations include multicast audio/video streams for Video-on-Demand,
network radio or surveillance; controlling access to the contents of CD ROMS or
other storage media carrying software or multimedia data; controlling access to a
set of vouchers giving access to other services; a multicast stream of messages
such as stock prices, communications network prices, electricity prices, network
management messages, news items, portfolio information, team briefings,

standards documents, academic papers, magazines, product reviews, black lists,

10

15

20

25

30

3

criminal intelligence, legal precedents, property profiles, pharmaceutical test resuits
etc; a sequence of multicast messages within a network game, virtuahl world or
simulation scenario (e.g. an ap‘titude exam), possibly just those messages that
control access, but also possibly any data messages for which proof of reception is
crucial to the fairness of the result of the simulation.

Control messages are preferably, but not necessarily distributed on-line.
They may be distributed by any suitable means (e.g. on plastic cards, bar-codes,
microdots, floppy disks etc.).

Preferably a control field is distributed to each of the multiplicity of users,
and the secure module is arranged to enable decryption of a respective frame only
when the said control field has been passed to the secure module. Preferably the
said control message for modifying the availability of keys is communicated to the
secure module in the said control field. '

These preferred features of the invention, make it more difficult for the
user to circumvent the control exercised through the key generation system. By
passing a control control field to the secure module with each frame, and only
allowing decryption when the control field is received they protect against
interruption of the control channel to the secure module.

Preferably, each data frame includes a frame identity field, and each key
generated by the secure module is specific to one frame identified by the said field.

As is further discussed below,. the security of the system is further
enhénced by incluging a frame identity field, and making the process of decryption
dependent on the frame identity.

The method may include generating and storing a receipt for each frame
decrypted by the user. The use of receipts generated in this manner is described
and claimed in the present applicant’'s co-pending British Patent Application
number 9726934.4, filed 19.12.97, Agent’s reference A25546. The contents of
that earlier application are incorporated herein by reference.

The user may receive and process the data frames using an appropriate
terminal such as a personal computer or any other appropriate device, such as, for
example, a Java-enabled mobile cellular telephone. The secure module provides a
region in the customer terminal which is effectively under the control of the data
provider, and which is not readily accessible to the customer. The secure module

may simply be a software module which executes a cryptographic algorithm. This

10

15

20

25

4

might be implemented, for example, as a Java program distributed by the operator
of the remote data source as part of the process of setting up a session. To
provide still higher levels of security, it is preferred that the secure module should
include a dedicated processor and store located, optionally but not necessarily,
within a physically secure housing. Examples of such secure modules include
smartcard structures, and cryptographic PC cards.

When the secure module has only a relatively low processing power, as
may be the case, for example, when it is a smartcard, then preferably that module
is required simply to output the different respective keys. Other processes running
in the main part of the customer terminal are then responsible for decrypting the
data frames. Alternatively, when the secure module has more processing power,
as when, for example, a cryptographic co-processor card is used., then preferably
the encrypted data frames are passed to the secure module and the module
generates the respective keys, decrypts the frames, and passes the decrypted
frames out, for example, to an application program running on the customer
terminal.

Preferably the control message is distributed with a data frame to the
multiplicity of users, a user identity field identifying a selected user or group of
users is included in the control message, and the control message is acted on only
by the user or group of users identified by the said user identity field. The control
message may include a stop flag and a contact sender flag. For example, the
contact sender flag might be used to initiate a remote procedure call from the
customer terminalAto the data source, allowing a new key generation policy to be
communicated to the terminal.

The method may include applying digital watermarks, that is different
characteristic variations to data decrypted at different respective customer
terminals. This serves to make possible the detection of fraud by collusion, for
example by one customer forwarding key values or decrypted data to another

customer.
S

' cording to a second aspect of the present invention, there is provided a
data communication tem comprising

a) a remote data source ar

d to output a plurality of frames;
b} encryption ‘means for encrypting the ality of frames with different

respective keys;

O

10

15

20

25

5

\‘ c) a communications channel arranged to distribute multiple copies of the

encryp\ted data frames ;

“\d) a multiplicity of customer terminals arranged to receive from the
communic‘:\ations channel respective copies of the encrypted data frames;

e) é\ key generator located at a customer terminal and programmed to
generate from\a seed value keys for use in decryptihg data frames:

) key\s_ontrol means connected to the key generator, the key control
means comprising.

an interfac&for receiving control messages; and
control means\responsive to the said control messages and arranged to
control the avail E)iltiy to the user of keys generated from the seed value;

and

g) decryption mea connected to the key generator and arranged to

decrypt the data frames ceived at the customer terminal from the
communications channel.

According to another aspeXt of the present invention, there is provided a
method of distributing digitially encodgd data, comprising
a) dividing said data into a multiplicity of frames,
b) encrypting said frames,
c) marking frames with a frame type field
d) communicating said data frames t§ a user
d) communicating a seed value for key\generation to the user
e) decodiﬁg the data frames at the user3 using keys derived from the seed
value

f) generating and storing receipts for id data frames, said frames
including frame type data from the frame type field. \

The invention also encompasses customer terminals and data servers
adapted to implement the invention in any of its aspects. It also encompasses
methods and systems in which data is sourced from a plurality of different data
sources.

Systems embodying the present invention will now be described in further
detail, by way of example only, with reference to the accompanying drawings in

which:

10

25

30

6

Figure 1 is a schematic of a data communication system embodying the
network;

Figure 2 is a schematic showing in further detail the functional
components of the customer terminal in the system of Figure 1;

Figure 3 is a flow diagram showing the principal phases of operation of the
system of Figure 1; '

Figure 4 is a flow diagram showing in further detail the verification phase;

Figure 5 is a flow diagram showing in further detail the initialisation phase;

Figure 6 is a flow diagram showing in further detail the received/decrypt
phase;

 Figure 7 is a flow diagram showing in further detail the receipt phase;

Figure 8 shows the software architecture of the customer terminal;

Figure 9 shows the software architecture of the data server;

Figures 10a and 10b shows the structure of a data frame;

Figure 11 shows message flows in the data communications system;

Figure 12 shows the network of an alternative embodiment

As shown in Figure 1, a data communications system includes a data
server 1 (“sender’s machine”) connected to a number of customer terminals 2 via
a data communications network 3. Although for ease of illustration only a few
customer terminals are shown, in practice the data server 1 may communicate
simultaneously with many terminals. In the present example, the data
communications network 3 is the public Internet. The sub-networks and the
associated routers connecting the data server to the customer terminals support 1P
(Internet Protocol) multicasting.

In the present example, the data server 1 is a video server. The data
server reads a video data stream from a mass storage device and compresses the
data using an appropriate compression algorithm such as MPEG 2. An encryption
module in the data server 1 then divides the compressed .video data stream into
frames. For example each frame may comprise data corresponding to one minute
of the video signal. An ‘encryption algorithm, such as that described in further
detail below, then encrypts the frames of data. A common encryption algorithm is
used for all of the frarnes in one session. However, a sequence of keys is used,

with a different key for each successive frame.

10

15

20

25

30

7

At each customer terminal, incoming data frames are processed using a
sequre module 4. As described in further detail below, the secure module 4
genexates a sequence of keys corresponding to those used originally to encrypt the
data fkgmes. The number of keys to be generated in a given session are
determinead by a contract between the user and the operator of the data server.
For examb ., in the case of video-on-demand, the user might select program
material, in rejponse to which the server identifies the number of keys required to
decrpt all the fragnes in the programme, and the cost of the programme. In return
for payment from %he user, the server sends the seed value for the key, together
with a control instrudtion for the secure module to generate the required number,
e.g. one hundred, of tha keys. The keys may be passed out to the main processor
of the customer terminal\to allow the data to be decrypted. Alternatively, the
secure module itéelf may rry out the step of decryption. |In either case, the
secure module stores a record\of the keys generated. This record may comprise,
for example, a count of the totaNnumber of keys issued in the course of a session,
together with a session ID and a rexord of the time of the session.

During the course of the seXsion, control signals may be sent to modify
the access rights of the customer. Fo example, the user might choose to quit a
program at an early stage and to gain a Xefund. This is effected by transmitting
from the data server a data frame which cdatains, in addition to the data itseif, a
control message including the identity of t particular customer or group of
customers whose access rights are to be modifjed. The control message may
include a simple “stop” flag which, when set caudes the secure module to cease
releasing keys. Possible formats for the commun)cation of control signals are
discussed in further detail below with respect to Figured 10A and 10B. Conversely,
the user might choose to view additional programme rRaterial, in which case a
control message may be sent to the secure module to incregse the number of keys
to be generated e.g. from 100 to 200. Other changes in status are also possible.
The frames may include a meta-data field which may be used\to distinguish, for
example, between different classes of subscriber. Forﬁiexample, bscribers might
be divided into gold,_silverAand bronze classes, with gold users haying access to
data frames having meta-data values m1, m2 or m3, silver users hav) g access to
m1 or m2, and bronze users having access to m1 only. In return for payment

during the course of a session, the user might upgrade their subscription &.g. from

10

30

~_ 8

~

\\
bronze to silver~and thereby gain access to programme material carried in frames

with m2 meta-data valUesn addition to material carried in frames with m1 meta-

data values. The change is e d by the data server transmitting a control

message to the secure module mandating eneration for m2 frames in addition
to m1 frames.

Each data frame or ADU may be sent with a frame type that allows the
frames to be receipted or controlled in different ways. For example, a user may
pay to watch an hour’s worth of a video stream, but with adverts and credits not
counting within that hour. Each frame in this case includes a type, that may be
signed or encrypted, with another key sequence, that identifies the frame as
relating to chargeable or non-chargeable data. An advertiser may pay for the
network transmission cost of, e.g. adverts, on condition that the user returns their
receipt. This mechanism may also be used in systems of the type where a user is
paid to receive advertisements.

Prior to commencing a session, a customer terminal 3 may have
contracted with the operator of the data network 2 for a quality of service (QoS)
which requires a specified minimum number of frames to be delivered per unit
time. If subsequently, congestion in the network 2 causes the rate of frame
delivery to fall below that specified in the contract, then the customer terminal 3
request from the data server 1 a refund of charges for the session. To validate
this request, the data server 1 requests from the secure module 4 a “receipt”.
This receipt includes the data recorded in the data store and so provides a tamper-
proof indication of the number of frames decrypted and made available to the
customer in the course of a specified session.

\\figure 2 shows the principal functional components of the customer

ant to the present invention. A network interface 22 communicates

terminal re

data frames to a from the data network. The data frames pass from the

interface 22 to a secure™mpdule 23. The secure module 23 has sub modules
comprising a decryption module key generation module K and a secure store S.
The key generation module passes a series_of keys to the decryption module which
decrypts a series of data frames received from~the interface 22 and passes these
to an application layer module 24. This carries out f er processing and passes
the resulting data to an output device, which in this exampleis_a video display unit

VDU 25. In a preferred implementation, the interface 22 may embodied in

Pﬂ

10

15

20

25

30

3 @

9

m\by an ISDN modem and in software by a TCP-IP stack. The secure
module 23%&@\3, for example, a smartcard which is interfaced to the customer
terminal via a PCﬁC socket The smartcard may use one of a number of
standard data interfaces chh\Q the Java card API (application programmer’s
interface} of Sun Microsystems,\ the Microsoft smartcard architecture.
Alternatively, the secure module mam died by a PCl cryptographic co-
processor card such as that available commerciZyXom\l%M.

Figure 8 illustrates a software architecture for the customer terminal. The
application layer on the terminal is supported by a decrypting data channel which
in turn overlies a data channel layer connected e.d. to a network. The decrypting
data channel has associated with a decrypter module. This decrypter module calls
resources in a secure module (shown within dashed box) comprising a receipting
key generator a key generator, and a receipt store. It will be understood that this
architecture is given by way of example only, and alternatives are possible within
the scope of the invention. For example, the receipt store may be outside the
secure module.

Figure 9 shows a corresponding architecture for a data server. This
comprises the sender, the encrypting data channel, the encrypter and the key
generator.

Figure 3 shows the main phases in the operation of the system described
above. In phase P1, the server verifies that the secure module in the customer
terminal is trustworthy and has a recognised identity. In phase P2 the secure’
module is initialised to decode data for a particular session. In phase P3 the data
is transmitted. and decryption carried out . During this phase a control message
may be sent to the contro! module, for example to modify the number of frames
which the user is allowed access to. In stage P4, which is optional, a receipt is
generated. These phases will.now be described in further detail.

When the secure module is, for example, a smartcard, then that smartcard
is issued by the manufacturer with a unique public/private key pair. This key pair
may be certified by a trusted third party. In phase P1, the server carries out steps
to confirm that the smartcard does indeed come from a trusted supplier. The steps
of phase P1 are shown in figure 4. In step S1 the server generates a random
string. In step S2, the server sends the random string via the data network to the

customer terminal. In step S3, the random data string is passed to the secure

10

15

.20

25

30

10

module (e.g. the smartcard). In step S4 the smartcard signs the random string. In
step S5 the smartcard returns the signed string together with the relevant public
key to the client application running on the customer terminal. In step S6, that
client application returns the signed string and the public key via the data
communications network to the server. In step S7 the server verifies the signed
random string.

As shown in Figure 5, to set up the secure module to decode data in a
particular session, the server first generates (s51) a seed value for use with an
appropriate pseudo-random or chaotic function to generate a series of keys. It also
generates a session key (s52). The server encrypts the seed value and a maximum
number of keys to be generated using the secure module’s public key (s3). It then
transmits the encrypted seed value and maximum number of keys to be generated
and the session key, to the customer terminal (s54). The client application passes
the seed value and session key on to the secure module (s55). The secure
module sets a packet counter to zero (s56) and initialises a sequence generator
with the seed value (s57). The customer terminal is then ready to receive and
decrypt data frames.

The server subsequently sends a series of frames to the client. Each
frame has a frame number (also termed herein the packet number). Each frame
might also have a session k_ey transmitted with it. The sequence of steps for the
nth frame is illustrated in Figure 6. In step s61 the server sends the encrypted nth
frame to the client. The client requests the key x for frame n from the secure
module (s62). The secure module records the request (s63). The smartcard then
returns the key x to the client (s64}). The client deciphers the frame using x (s65).
The client tests to determine with the frame is the last of a session (s66). If not
then the steps are iterated for the n+ 1th and subsequent frames.

In setting up the session, the customer has previousiy negotiated an
agreement with the service provider as to the QoS level for the session. For an
application such as video on demand this level may be stringent: for example the
customer may require that no application-level frame is lost in transmission. If
then this QoS level is not met, then the customer requests a refund from the
service provider. The request for refund might specify, for example, that there
was frame loss at a specified time into the video transmission. In processing such

a request, the server requires a receipt from the customer. As shown in Figure 7,

10

15

20

25

30

11

in step s71 the client requests a receipt for a specified session s from the secure
module. The secure module reads the data which it recorded for that session and
generates a receipt containing that data (s72). The secure module signs the
receipt with the secure module’s private key (s73). The secure module returns the
signed receipt to the client {s74). The client in turn transmits the signed receipt to
the server {s75). The server checks the signature on the receipt using the public
key of the secure module {s76). The pubilic key may be read from a database
stored at the server. Having verified the signature, the server can then check the
customers claim for a refund using the data contained in the receipt. This data
may show, for example, a discrepancy between the number of frames decrypted in
a session and the number transmitted by the server, thereby substantiating the
customer’s claim that a frame was lost.
Using the following notation,

sign(k,d) - d signed with key k (i.e. d and the signature of d with k)

enca(k,d) - d encrypted asymmetrically with key k

encs(k,d) - d encrypted symmetrically with key k

the steps described above may be summarised as follows:

1. Confirming the Secure Space ID

The object here is to confirm that the secure space is one that the sender can
trust.
1.Sender generates a random string r (a nonce)
2.Sender sends r to receiver
3.Receiver sends r to secure space
4.Secure space signs r with private key s to produce
sign(s,r)
5.Secure space returns sign{s,r) and pubiic key p
signed by TTP with its private key t (producing
sign(t,p)) to receiver
6.Client returns [sign(s,r), signi(t,p)]to sender
7.5ender checks sign(t,p) with TTP (either by
invoking TTP server or using cached TTP public
key)
8.Sender checks sign(s,r) with p

12

2. Setting up the Keving System for

Decoding Data

The sender needs to set up the keying system so that it can generate a sequence
5 of numbers for decoding each packet. This sequence will be some

chaotic/pseudo-random sequence.

1.Sender generates a seed value v
2.Sender generates a session key k
10 3.Sender encrypts v using secure space's public key
p producing enca(p,v).
4.Sender sends [k,encalp,v)] to client
5.Client sends [k,encal(p,v)] to card
6.Keying system sets packet counter to zero
15 7.Keying system decyphers enca(p,v) using secret
key s

8.Keying system initializes sequence generator with v

The session information may comprise:

20 Sent in plain:

Session Key
Sent encrypted:
Seed value
25 Sequence generator type
Receipt type (for non-repudiation)
Maximum number of keys to generate (for

multicast key management) .

30 In this scenario there are a limited number of sequence generators and receipts
that can be used as it is identifiers that are being sent over as part of the session
information. Alternatively a secure class loader may be implemented that allows

new sequence generators and receipts to be uploaded into the encryption system.

10

15

20

25

30

13

Another aspect of session setup is session amendment.The user may pay to
receive a certain amount of data and then later on pay for some more. This may
be handled by updating the session information {e.q.

by increasing the maximum number of keys to be generated) while the session is

active.

3. Receiving and Decyphering Data

The sender sends a sequence of frames to the receiver, each with a frame number

and a session key.

1.Sender encrypts frame fn,k with frame key xn,k to
produce encs(xn,k,fn,k) for frame n within session
k

2.Sender sends encs(xn,k,fn,k) to receiver

3.Receiver requests key xn,k for frame n in session k
from keying system.

4.Keying system records request with receipt object
{for non-repudiation)

5.Keying system returns key xn,k to receiver

6.Receiver decyphers encs{xn,k,fn, k) using xn,k to
obtain fn,k.

s

4. Generating a Receipt (for Non-repudiation)

1.Receiver requests receipt for session key s from
keying system

2.Keying system generates receipt for session key k,
ck.

3.Keying system signs ck with private key s giving
sign(s,ck)

4 .Keying system returns sign{s,ck} to receiver

5.Receiver sends sign(s,ck) to sender

6.Sender checks sign(s,ck) against public key p of

10

15

20

25

30

14

keying system known to be used by the client

{database lookup)

7.Sender refunds if necessary

The sequence used for generating the keys in the above examples may be
distributed to customers terminals'using HTTP (hypertext transfer protocol) as
Java code. A suitable chaotic function is:

i1 =4rx,(1-%,)
When r=1 this function takes and generates numbers in the range O to 1. A
chaotic function such as this has the property that any errors in the value of x,
grow exponentially as the function is iterated. In use, the secure module uses a
higher accuracy internally than the accuracy of the key values exposed to the
client. For example the secure module may use 128-bit numbers internally and
then only return to the client the most significant 32 bits. In generating the key
values, the chaotic function is iterated until the error in the value returned to the
client grows bigger than the range. This then prevents the user guessing the

sequence from the values returned by the secure module.

As an alternative or additional security measure, a different function may
be used for each session. This serves to further reduce the possibility of the

customer predicting key values.

Figure 10A shows the format of a frame transmitted in a first

implementation of the system described above. The frame format is as follows:
1.Signature of Hash (2)
2.Hash of 3,4, 5,6
3.Key ID
4.Stop flag (y/n) (encrypted)
5.Contact sender flag (y/n) {encrypted)
6.Card IDs (encrypted)
7 .Frame data

The frame is received at the network interface of a customer terminal and fieids 1

to 6 are passed to the secure module. These comprise an encrypted block

10

15

20

25

30

15

containing control fields as well as a key identity. This block is decrypted within
the secure module . If the card ID is that of the secure module in question, then
the secure module checks fields 4. and 5., the stop flag and contact sender flag. If
the stop flag is set then no more keys are passed out. If the contact sender flag is
set then the card does a remote procedure call to the sender {or the sender’'s
representative) and gets a new key generation policy. The secure module then,
unless instructed otherwise by the control fields, passes a key out for use in
decrypting the frame data contained in field 7. The total length of the control
fields passed to the secure module, and in particular the number of Card ID’s (field
6), may be variable, in which case, in addition to the fields shown, a further,
Qhéhcryptedfield is included before the control fields to indicate the total Iength of
the control message. If the secure module does not receive a control field then it
ceases to release keys. In this way neither accidental loss of a control message,
nor intentional removal of such a message, can result in the customer gaining

unauthorised access to data.

Figure 10B shows the format of a frame transmitted in a second

implementation of the system described above. The frame format is as follows:
1.Signature of Hash (2) (signed with sender’s public key)
2.Hash of 3, 4, and 5
3.Key ID
4.Control message (encrypted)
5.Card ID(s) (encrypted)
6.Frame data

The stack passes fields 1, 2, 3, 4 and 5 into the secure module to receive the key
for 6. The use of this frame format relies upon a probablistic approach to
controlling access. Every time a frame is sent it contains an encrypted control
message and card ID which must be passed into the secure space along with the
key ID to obtain the key. The control message may be a code representing the
command "pass out no more keys”. If the card receives this and the card iD{(s)
relate to it, it executes the command. If several users need to be excluded from a

session, then their card IDs are rotated through different packets. In these

10

15

20

25

30

16

examples the card ID constitutes the “user identity field” referred to in the c¢laims

below.

Figure 11 shows the message flows involved in setting up a session.
Message 1 is a request from an application on the customer terminal for access,
for example, to 100 frames of data. This message may be followed by other
transactionjs_, (not shown) in the course of which the customer pays for the
requested data, for example using a credit card number. Subsequently the sender
transmits a set-up message , message 2 , to a secure module proxy on the
customer machine. The control field from this set-up message is passed on to the
secure module itself (message 3). The field may specify, for example, the number
of keys to be generated and for which frame numbers. It may also contain the
seed value for key generation. An acknowledgement is then returned from the
secure module to the proxy (message 4) from the proxy to the sender {message 5)
and from the sender back to the application which generated the initial request
(message 6). The interface between the sender and the proxy, indicated by the
dashed ellipse, might be implemented, for example, using Java RMI (remote

method invocation) or, as in this case, a CORBA interface.

To enhance the security of the system by reducing the possibility of key
values being predicted by the user, data frames may be encrypted using two key
sequences instead of one. The first is for the frame encryption key as described .
previously. The second sequence is for a frame identification key. Each packet
within a frame would contain at least a frame sequence number 1, which may be
incremented from zero and a frame identification key i, which is generated from
the second sequence, and the data that is encrypted with a key e, generated from
the first sequence. To decrypt the data requires the key e, from the decryption
system. It identifies the key by supplying n and proves that it has a frame that
was encrypted with that key by supplyin i,. To To break the sequence the
attacker can only use a limited number of keys unless he/she can break the
identification sequence from the same limited number of keys. Additional
protection could be pfovided by making the sequence generator refuse to provid‘e

more keys if the application provides an incorrect frame identification key and,

optionally, refusing to allow the application to re-initiallize the session.

10

15

20

25

30

® ®
17

Figure 12 shows a further alternative embodiment, in which muiltiple data
sources 1,1a communicate dafa to the customer terminals. AltHough. for ease of
itustration, only two data sources are shown, in practice the system may include many
more sources. Where multiple sources are generating data, it is possible to use the
invention on ‘a per-source basis, with each receiver entering into the setup phase with
each source. However, for large numbers of sources, this becomes unscalable and
time-consuming. Instead, in a preferred implementation, a sequence id of any ADU
arriving at any receiver consists of two parts, the sender id and the per-sender
sequenceid. The sender id may be its IP address and port number, in which case
these would already be in the header of each packet. The sender id acts as an offset
to the primary seed to produée a secondary seed (e.g. by XORing it with the seed).
Thus each smart card operates as many key sequences as it hears senders, each
sequence effectively seeded from the same primary seed, but then offset to a
secondary seed before starting each sequence in a similar way to the pseudo-random
or chaotic seqences described below.

Whenever an ADU arrives, the sender id is"examined to look-up the correct
sequence, then the sequence id allows the correct key to be generated. This allows
each receiver to only pass through the set up once for all senders in a multi-sender
session.

The session initiator generates the primary seed and passes it to each sender
using regular cryptograpic privacy (e.g. under the public key of each sender). Each
sender offsets the primary seed with their own id to produce their secondary seed,
which they would u-se to start the key sequence for ADUs they sent.

Any sender may take any receiver through the setup phase by passing it the
primary seed, assuming there is some way for any sender to establish who was an
authorised receiver (e.g. a list supplied and signed by the session initiator, or a token
the initiator gave to each receiver in return for payment, which each receiver had to
reveal to any sender).

The examples described above may be used in the context of a community of
interest network (COIN) or a virtual private network (VPN). In this case each source of
information would split its data into ADUs and transmit each ADU encrypted with
different keys across the COIN. The same ADU would always be transmitted with

under the same key no matter how mény times it was transmitted to different parties

10

15

20

25

30

-)
@ e
18

within the COIN. Sources of information might be direct, such as the parties involved in
the COIN or indirect such as Web servers or caches commonly accessible to all
parties within the COIN. In the indirect case, the information would be sent to the Web
server or cache with its sequence number in the clear but data encrypted. It would be
stored in the same encrypted form as it had been first transmitted. Only when the final

recipient accessed the Web server or cache would their smart card generate the key
for decryption and record receipt of the information. The watermarking techniques
described previously could be used if tracing of who was passing on decrypted data

was required.

Table 1 below list Java code for implementing a chaotic function. It

returns the next number in a sequence, or the nth number in a sequence.

The key values need not necessarily be generated by a sequence. Instead
other functions of the form k =f(seed, frame i.d.), where k is a key value, may be
used. For example, the binary values of the frame identity might be used to select
which of a pair of functions is used to operate on the seed value. Preferably a pair
of computationally symmetric functions are used. For example , right or left-
shifted XOR (exclusive OR) operations might be selected depending on whether a
binary value is 1 or 0. If we label these functions A and B respectively, then, e.g.,A
frame number six , i.e. 110, has a key generated by successive operations AAB on

the seed value.

** Class to implement a chaotic sequence */

public class SecureSequence {

protected int seqgNum;

protected double currNum;

10

15

20

25

30

35

19

/** Create a SecureSequence Object from a new seed */
public SecureSequence (double currNum) {
segNum = 0;

this.currNum = currNum;

/** Return the next number in the sequence */

public int next () {
++segNum;
for (int i = 0; i < 20; ++i) // 20 iterations is a guess,

could use less

currNum = 4 * currNum * (1 - currNum) ;

// return the most significant 32 bits of a 64 bit number

return (int)((double)Integer.MAx_VALUE * currNum) ;

10

15

20

25

30

35

20

/** Return the current sequence number of the last number

returned

*/

public int sequenceNumber () {

return segNum;

/** Return the number in the sequence at the requested
position in

the

sequence */

public int next(int segNum) {

// if the number is too small return zero (should really be
an exception)

if (seqNum <= this.seqgNum) return 0;

// iterate through the sequence to get to the right number

while

(this.segNum

segNum)

10

int value=next();

return value;

21

	2000-06-06 Specification

